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Abstract— Based on the assumption that the parame-
ter can be measured in real time, we propose a model
predictive control (MPC) method for linear-parameter
varying (LPV) systems subject to possibly asymmetric
constraints which adopts the analogous framework of
terminal control law, terminal set and terminal penalty
of nonlinear model predictive control. The optimization
problem is formulated as a convex optimization problem
and, recursive feasibility and closed-loop stability are
guaranteed by its feasibility at initial time. For LPV
systems with symmetric constraints, we reformulate the
convex optimization problem as a semi-definite program.
Numerical examples demonstrate the properties of the
proposed MPC design.

I. INTRODUCTION

Model predictive control or receding horizon control

is a class of optimization based control methods in

which a control sequence is determined by optimizing

a finite horizon cost at each sampling instant, based

on an explicit process model and state measurements.

The first control action of the optimal sequence is

applied to the plant. At the next sampling instant,

the optimization problem is solved again with new

measurements, and the control input is updated. Due to

its ability to handle constraints on inputs and states, the

method has received much interest in both academic

community and industrial society over the last 30

years, see e.g. [1, 2].

Linear-parameter varying systems are linear systems

whose dynamics depend on time-varying parameters,

which takes its values in pre-specified set. The anal-

ysis and controller synthesis of LPV systems play an

important role in control theory and application since

both nonlinear systems and linear systems with model

perturbation can be dealt with [3, 4]. Predictive control

of LPV sytems has been effected through the concept

of ellipsoidal invariant sets [5] which has been used

to design a state-feedback control law that minimizes

an upper bound on the “worst-case” infinite horizon

objective function, and keeps the system state inside

an invariant feasible set. Many results in the literature

represent extensions of [5], for example, schemes

with enlarged feasible region and reduced computa-

tional burden have been developed. Using parameter-

dependent Lyapunov functions, [6–8] propose proce-
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dures which do not require the quadratic stabilizability

of the given system. An improved approach is pro-

posed in [9] which deploys a fixed state-feedback law

with perturbations. The algorithm requires a modest

amount of online computation and introduces extra

degree of freedom to enlarge the volume of the relevant

invariant set. A parameter-dependent control law in

the framework of gain-scheduling is proposed in [10]

which offers potential performance improvements over

a fixed control law. A self-scheduling controller is

adopted in [11] which reduces conservativeness and

improves feasibility characteristics at the cost of on-

line heavily computational burden. Robust receding

horizon control schemes are proposed by [12, 13]

which are based on the minimization of the worst-case

stage cost with a finite terminal weighting cost. Only

symmetric constraints are considered in the aforemen-

tioned works which restrict the potential application of

the proposed schemes.

This paper provides a general framework to design a

model predictive controller for LPV systems with pos-

sibly asymmetric constraints. The online optimization

problem, which is formulated as a convex optimization

problem, allows the first control action to be chosen

freely, while the succeeding control actions can be

determined by an offline calculated terminal control

law. Feasibility and closed-loop stability are guaran-

teed by feasibility of the optimization problem at initial

time. For LPV systems with symmetric constraints, the

convex optimization problem can be formulated as a

semi-definite program (SDP).

The remainder of this paper is organized as follows.

Section 2 presents the formulation of the optimization

problem that will be solved online. Feasibility of the

proposed optimization problem, stability of the closed-

loop system and an improved algorithm for system

with symmetric constraints are discussed in detail

in Section 3. Numerical examples to illustrate the

effectiveness of the algorithm are given in Section 4.

Section 5 concludes the paper with a brief summary.

II. PROBLEM FORMULATION

Consider discrete-time linear parameter-varying sys-

tems of the form

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k), (1a)

y(k) = C(θ(k))x(k) + D(θ(k))u(k), (1b)

subject to the constraints

y(k) ∈ H, (2)
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where H is a compact set which contains the origin in

its interior. Let x(k) ∈ Rnx denote the state, u(k) ∈
Rnu the control input, and y(k) ∈ Rny the constraints

output which is not necessarily measurable.

If the constraint sets are symmetric, we say the

system has symmetric constraints. Otherwise, the sys-

tem has asymmetric constraints. If the constraints are

symmetric we write them in element-wise fashion as

H0 :=
{

y(k) ∈ Rny |ym,max ≤ ym(k)
≤ −ym,max, m = 1, . . . , ny

}

,
(3)

where ymax is a given constant compatible vector.

The system matrices A(θk) ∈ R
nx×nx , B(θ(k)) ∈

R
nx×nu , C(θ(k)) ∈ R

ny×nx and D(θ(k)) ∈ R
ny×nu

are assumed to depend on the parameter vector θ(k) :=
[θ1(k), θ2(k), · · · , θN (k)]T ∈ RN , which belongs to a

convex polytope P ,

P :
N

∑

j=1

θj(k) = 1, 0 ≤ θj(k) ≤ 1.

Clearly, as θ(k) varies inside the polytope P , the

matrices of system (1) vary inside a corresponding

polytope Ξ, i.e.
[

A(θ(k)) B(θ(k))
C(θ(k)) D(θ(k))

]

∈ Ξ, (4)

which is defined by the convex hull of N local

extremal matrices [Ai, Bi, Ci, Di], i = 1, 2, · · · , N ,

Ξ :=Co
{

[

A1 B1

C1 D1

]

,

[

A2 B2

C2 D2

]

, . . . ,

[

AN BN

CN DN

]

}

.

Therefore, we can write the matrices of system (1) as

A(θ(k)) =

N
∑

j=1

θj(k)Aj , B(θ(k)) =

N
∑

j=1

θj(k)Bj ,

C(θ(k)) =
N

∑

j=1

θj(k)Cj , D(θ(k)) =
N

∑

j=1

θj(k)Dj .

Assume that no mismatch exists between the model

and the plant, and both the parameter vector θ(k)
and the state x(k) are available in real-time. Thus,

at every sampling time k, the current system matrices
[

A(θ(k)) B(θ(k))
C(θ(k)) D(θ(k))

]

are known exactly but the future

system matrices

[

A(θ(k + i)) B(θ(k + i))
C(θ(k + i)) D(θ(k + i))

]

, i ≥ 1

are uncertain and vary inside the prescribed polytope.

In this paper, we first consider the infinite horizon

MPC problem [5]:

Problem P1: Consider the system (1)-(3). For a

given initial state x(k), find a control law u = κ(x)
such that

J∞(k)=maxθ(k+i)∈P,i≥1

∑∞

i=0

{

x(k + i/k)T

Qx(k + i/k)+u(k + i/k)T Ru(k + i/k)
}

,
(5)

is minimized with respect to the time-varying parame-

ter θ(k) and output constraints (2), where Q ∈ Rnx×nx

and R ∈ Rnu×nu are positive definite weighting

matrices, and x(k + i/k) and u(k + i/k) denote the

future state and input predicted at time instant k.

Definition 1: A set Ω is an invariant set if x(k) ∈ Ω
implies x(k + i) ∈ Ω for ∀i ≥ 0.

III. MPC WITH ONE FREE CONTROL ACTION

In this section we first reformulate the prescribed

optimization problem P1 based on the concept of in-

variant sets and propose a novel MPC scheme with one

free control action. Stability of the closed-loop system

and feasibility of the related optimization problem can

be guaranteed by the feasibility of the optimization

problem at initial time. For the case of symmetric con-

straints, the convex optimization problem is formulated

as an SDP.

A. MPC for LPV systems

Define Ω(α) as a neighborhood of the origin

Ω(α) := {x ∈ Rnx |V (x) ≤ α, α > 0}. (6)

Then, Ω(α) is a level set of the positive definite

function V (x) := xT Px, P ≻ 0. The following as-

sumption is needed to reformulate the infinite horizon

cost (5).

Assumption 1: Suppose that there exists a continu-

ous local controller u = κ(x) such that the following

conditions are satisfied,

B0) y(k) ∈ H, for all x(k) ∈ Ω(α),
B1) V (x) satisfies inequality

x(k + i)TQx(k + i)+κ
(

x(k + i)
)T

Rκ
(

x(k + i)
)

+V
(

x(k + i + 1)
)

−V
(

x(k + i)
)

≤ 0, i ≥ 0,
(7)

for all θ ∈ P and all x(k + i) ∈ Ω(α).
According to Assumption 1, Ω(α) has the following

properties:

• The origin is contained in the interior of Ω(α),
due to V (x) > 0, ∀x ∈ Ω, and α > 0,

• Ω(α) is closed and connected, due to the conti-

nuity of V in x,

• Since (7) holds, Ω(α) is a robustly positively

invariant set for the “unknown” parameter of the

LPV system (1) controlled by u = κ(x).

The set Ω(α) and the function V (x) can be applied

as terminal set and terminal penalty of the considered

system [1, 14].

Remark 1: The terminal set in [15] is a neighbor-

hood of the equilibrium which satisfies constraints and

positive invariance. Here, Ω(α) is “robustly” positively

invariant and constraints are satisfied for all admissible

and “unknown” parameters.

Lemma 1: Suppose Assumption 1 is satisfied,

then V (x(k + 1/k)) is an upper bound on
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maxθ(k+i)∈P

∑∞

i=1

{

x(k + i/k)T Qx(k + i/k) +

κ
(

x(k + i/k)
)T

Rκ
(

x(k + i/k)
)

}

.

Proof: Summing up the inequality (7) from k = 1 to

∞, yields

V
(

x(∞/k)
)

−V
(

x(k + 1/k)
)

≤−maxθ(k+i)∈P

∑∞

i=1

x(k+i/k)TQx(k+i/k)+κ
(

x(k+i/k)
)T

Rκ
(

x(k+i/k)
)

,
(8)

Since Q ≻ 0 and R ≻ 0, it follows from (7) that

V
(

x(k + i + 1/k)
)

− V
(

x(k + i/k)
)

≤ 0, ∀i ≥ 0.

Thus, V (·) is a Lyapunov function and therefore we

have V
(

x(∞/k)
)

= 0. Plugging this into (8) proofs

the lemma. 2

With the results of Lemma 1 we approximate the

infinite horizon cost as

J(k) := x(k/k)T Qx(k/k) + u(k/k)T Ru(k/k)
+ x(k + 1/k)T Px(k + 1/k).

(9)

Therefore, problem P1 for the current state x(k) and

the current parameter θ(k) is reformulated as follows:

Problem P2: At time k, consider the optimization

problem
minimize

ū(k/k)
J(k) (10a)

subject to

x̄(k + 1/k) = A(θ(k))x̄(k/k) + B(θ(k))ū(k/k),

ȳ(k/k) = C(θ(k))x̄(k/k) + D(θ(k))ū(k/k),

ȳ(k/k) ∈ H, x̄(k/k) = x(k),

x̄(k + 1/k) ∈ Ω(α),

where Ω(α) is the terminal set, and x(k +
1/k)T Px(k + 1/k) is the terminal penalty.

In P2, the first control action can be chosen freely,

while the future inputs can be chosen according to the

feedback control law of Assumption 1.

Remark 2: If H is a convex set, then the optimiza-

tion problem P2 is a convex optimization problem [16].

Remark 3: If not only the parameter but also its

rate of variation, although not known a priori, are

online available, the prediction horizon in (9) can

be chosen as N = 2, i.e. J(k) :=
∑1

i=0

{

x(k +

i/k)T Qx(k + i/k) + u(k + i/k)T Ru(k + i/k)
}

+

x(k + 2/k)T Px(k + 2/k), since also x(k + 2/k) can

be calculated exactly at time k.

Remark 4: Furthermore, we can choose N arbitrar-

ily large if the varying parameter θ is a function of

state x(·) and control u(·). In this case θ(k + i/k) can

be determined by x(·) and u(·), and x(k + i + 1/k)
can be predicted by θ(k + i/k) and u(·) in a recursive

way. Unfortunately, this will introduce nonlinear terms

into the optimization problem which will lead to the

optimization problem P2 being nonconvex.

According to the principle of MPC, the open loop

optimization problem P2 is solved repeatedly at each

time instant k based on the measurement x(k) and

θ(k). The following theorem investigates the feasibility

and stability of system (1) with the proposed model

predictive controller.

Theorem 1: Suppose that

(a) for the LPV system (1), there exists a locally

asymptotically stabilizing controller u = κ(x), a

continuously differentiable, positive definite func-

tion V (x) = xT Px that locally satisfies (7), and

a positively invariant set Ω(α) defined by (6),

(b) the open-loop optimal control problem P2 is

feasible at time k = 0.

Then,

(i). the optimal control problem P2 is feasible for all

k > 0,

(ii). the closed-loop system is nominally asymptoti-

cally stable with the region of attraction D being

the set of all states for which the open-loop

optimal control problem has a feasible solution.

Proof: In what follows u∗(k), J∗(k) denote the opti-

mal solution and the optimal value of the optimization

problem solved at sampling time instant k. x∗(k+1/k)
denotes the optimal predicted evolution of the system,

i.e. x∗(k + 1/k) = A(θ(k))x(k) + B(θ(k))u∗(k).

Part (i). Since, by assumption, there are no distur-

bances and mismatch, the state measurement at time

k + 1 is x(k + 1) = x∗(k + 1/k). In virtue of the

optimization problem P2, x∗(k + 1/k) ∈ Ω(α), i.e.

x(k + 1) ∈ Ω(α). It follows from Assumption 1 that

u(k + 1) = κ(x(k + 1)) is a feasible solution to

the optimization problem P2 at time k + 1 for all

x(k + 1) ∈ Ω, which proofs part (i) of the Theorem.

Part (ii). Consider the feasible solution at time k+1
obtained in Part (i). Following standard steps in the

stability proofs of MPC [1, 15], we obtain

J(k + 1) = xT (k + 1/k + 1)Qx(k + 1/k + 1)

+uT (k + 1/k + 1)Ru(k + 1/k + 1)

+xT (k + 2/k + 1)Px(k + 2/k + 1)

= J∗(k)−xT (k/k)Qx(k/k)−uT (k/k)Ru(k/k)

+xT (k + 2/k + 1)Px(k + 2/k + 1) +

xT(k + 1)Px(k + 1) +xT (k + 1)Qx(k + 1)

+κT (x(k + 1))Rκ(x(k + 1)),

with x(k + 1/k) = x(k + 1/k + 1) = x(k + 1) and
u(k + 1/k + 1) = κ(x(k + 1)). In virtue of (7), this

implies that

J∗(k + 1) ≤ J(k + 1)≤ J∗(k)−x(k)T Qx(k)
−u∗(k)T Ru∗(k).

(12)

Due to Q ≻ 0 and R ≻ 0, and its nonincreasing evo-

lution, we infer that limk→∞ x(k) = 0. Furthermore,

x = 0 is asymptotically stable due to the continuity of

the value function J(k) in x and u. 2

1345



B. Offline calculation

The online optimization problem P2 requires the of-

fline calculation of an infinite horizon cost in terms of

Lemma 1 and Assumption 1. For the case of symmetric

constraints, in the next step, we derive LMI conditions

which determine a terminal set associated with a time-

invariant terminal controller. Then, we formulate new

LMI conditions which lead to a parameter-varying

terminal controller.

Lemma 2: [17] (Fixed terminal control law) Sup-

pose that the LPV system (1) is subject to symmetric

constraints (3). If there exist a scalar α, matrices

X > 0 with X ∈ Rnx×nx , and Y ∈ Rny×nx such

that

α > 0, X > 0, (13a)








X ∗ ∗ ∗
AiX + BiY X ∗ ∗

X 0 αQ−1 ∗
Y 0 0 αR−1









> 0, (13b)

[

y2
m,max eT

m(CiX + DiY )
∗ X

]

≥ 0, (13c)

m = 1, 2, . . . , ny, i = 1, 2, . . . , N,

where em is the m-th element of a basis vector in

Rny . Then, with the fixed state feedback control law

κ(x) = Y X−1x the region Ω(α) with P = αX−1 is

robustly invariant.

The time-invariant feedback law introduces unnecess-

sary conservativeness. It was shown in [18] that a

parameter-dependent terminal control law leads to less

restrictive LMI conditions.

Lemma 3: [18] (Parameter-varying terminal con-

trol law) Suppose that the LPV system (1) is subject

to symmetric constraints (3). If there exist a scalar α,

matrices X > 0 with X ∈ Rnx×nx , Yj ∈ Rny×nx , j =
1, 2, · · · , N , Tij and Mij (i, j = 1, 2, . . . , r) such that

α > 0, X > 0, (14a)






Lii ≥ Tii, i = 1, 2, · · · , N,
Lij + Lji ≥ Tij + T T

ij ,
[Tij ]N×N ≥ 0, j < i,

(14b)







Fii,m ≥ Mii,m, i = 1, 2, · · · , N,
Fij,m + Fji,m ≥ Mij,m + MT

ij,m,
[Mij,m]N×N ≥ 0, j < i.

(14c)

Then, the parameter-varying state feedback control

u = κ(λ)x guarantees that the LPV system is robustly

invariant in the region Ω(α). In the above, κ(x) =
∑N

j=1 θj(k)Kjx with Kj = YjX
−1, V (x) = xT Px

with P = αX−1 and

Lij =









X ∗ ∗ ∗
AiX + BiYj X ∗ ∗

X 0 αQ−1 ∗
Yj 0 0 αR−1









,

Fij,m =

[

y2
m,max eT

m(CiX + DiYj)
∗ X

]

.

Remark 5: In order to obtain the feasible region of

the online optimization problem P2 as large as possi-

ble, one can solve the offline optimization problem

maximize
α,X,Y

(det X)
1

nx , s.t. (13),

or

maximize
α,X,Y1,Y2,··· ,YN

(det X)
1

nx , s.t. (14),

respectively, to get the static terminal control law or the

parameter-dependent terminal control law. Both of the

optimization problems are convex and can be solved

by standard LMI solvers [19].

Remark 6: For LPV systems with asymmetric con-

straints, there is no systematic way to get ellipsoidal

terminal regions except for choosing tighter, symmet-

ric constraints within the asymmetric bounds.

C. MPC for LPV systems with symmetric constraints

In this subsection we will present a more efficient

algorithm for the optimization problem P2 in the case

of symmetric constraints. We choose the matrix P as

a new online optimization variable and transform the

problem P2 to an SDP. In other words, the terminal

control law, the terminal set and the terminal penalty

are determined online as well.

Minimization of x(k/k)T Qx(k/k) +
u(k/k)T Ru(k/k) + x(k + 1/k)T Px(k + 1/k)
with P ≻ 0 is equivalent to

minimize
α, u(k/k)

α, s.t.

x(k/k)T Qx(k/k) + u(k/k)T Ru(k/k)
+x(k + 1/k)T Px(k + 1/k) ≤ α.

By the Schur complement [19], this is equivalent to

minimize
α, u(k/k)

α, s.t.









1 ∗ ∗ ∗
x(k/k) αQ−1 ∗ ∗
u(k/k) 0 αR−1 ∗

∆ 0 0 X









≥ 0, (15)

with ∆ = A(θ(k))x(k/k)+B(θ(k))u(k/k) and X =
αP−1. Due to x(k + 1/k)T Px(k + 1/k) ≤ α, which

follows from (15), the optimization problem P2 with

parameter varying terminal control law is formulated

as:

Problem P3: Consider the following LMI opti-

mization problem

minimize
α, u(k/k), X, Y1,Y2,··· ,YN

α,

subject to

x̄(k + 1/k) = A(θ(k))x̄(k/k) + B(θ(k))ū(k/k),

ȳ(k/k) = C(θ(k))x̄(k/k) + D(θ(k))ū(k/k),

ȳ(k/k) ∈ H0,

x̄(k/k) = x(k),

(14), (15).
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Corollary 1: Assume that the optimization problem

P3 is feasible at initial time. Then, the MPC strategy

based on P3 guarantees that

- P3 is feasible for all k > 0,

- The symmetric constraints (3) are satisfied for all

time instants,

- The MPC control law asymptotically stabilizes

the LPV system (1).

Proof: Let {α∗, u∗(k), X∗, Y ∗
1 , Y ∗

2 , · · · , Y ∗
N} denote

the solution to the optimization problem P3, associated

with the minimum cost α∗(k), at the sampling time k.

We know from Theorem 1 that {α∗, K∗(k)x(k +
1/k), X∗, Y ∗

1 , Y ∗
2 , · · · , Y ∗

N} is a feasible solution for

the state x(k+1) at time instant k+1, where K∗(k) =
ΣN

i=1θi(k)Y ∗
i (X∗)−1.

The proof of asymptotically stability and constraints

satisfaction can be completed following the lines of the

proof of Theorem 1. 2

Remark 7: If Y = Y1 = . . . = YN , the opti-

mization problem P3 with parameter-varying terminal

control law is replaced by a problem with static

terminal control law, which has been proposed in

[11, 12]. The parameter-varying terminal control law

provides extra degree of freedom in the optimization

problem P3, which promises a larger feasible region

and better performance, however, at the cost of higher

computational burden.

IV. NUMERICAL EXAMPLE

Example 1 In order to test the effectiveness of the

proposed MPC algorithm, according to Corollary 1,

we first revisit Example 2 reported in [5]. As in [7],

we assume that the input constraint is |u(k)| ≤ 1, and

θ(y(k)) = 0.5 + 50y(k)2 with y(k) = x2(k) − x1(k).
Furthermore, we assume that the output constraint

|y(k)| ≤ 0.5 is imposed. We chose θmin = 0.5, and

θmax = θ(0.5) = 13.

The initial condition for the system states is given

as x0 =
[

1 1 0 0
]T

. The weighting matrices have

been chosen, Q = diag{1, 1, 1, 1} and R = 1. The

performance of the proposed method were compared

with previous results, which are [5] with static terminal

control law and [11] with self-scheduling controller.

We see from Figure 1 that the algorithm P3, provides a

feasible solution and the smallest upper bound on the

infinite-horizon cost among the considered methods.

At the same time, Figure 1 shows that the proposed

MPC algorithm leads to faster convergence than the

other two algorithms.

Example 2 Consider the discrete-time system

x1(k + 1) = 0.5x2
1(k) + u,

x2(k + 1) =
(

0.5 + sin2(k)/3
)

x1(k) + x2(k) + u,

with the input constraint −1.0 ≤ u ≤ 0.5, the state

constraints −1 ≤ x1, x2 ≤ 1. The initial condition

for the system states is given as x0 =
[

1 1
]T

.

The control objective is to regulate the initial state

to the equilibrium while satisfying the constraints. It

is possible to embed the nonlinear system into the

prescribed polytope [19]

Ξ = Co

{

[

1/2 0 1
1/2 1 1

]

,

[

1/2 0 1
5/6 1 1

]

,

[

−1/2 0 1
1/2 1 1

]

,

[

−1/2 0 1
5/6 1 1

]

}

.

(17)

Thus, we can use the proposed method according

to Theorem 1. We choose the weighting matrices as

Q = diag{1, 1} and R = 1, respectively. As discussed

in Remark 2, the optimization problem P2 is a convex

optimization problem since the input and state con-

straints sets are convex. To solve the problem, we used

CVX, a package for specifying and solving convex

optimization problem [20, 21]. For the example sys-

tem, it is observed that the proposed method achieves

good performance as well as constraint satisfaction.

Furthermore, we point out that there is no feasible

solution to the algorithms proposed in [5, 11], which

only consider symmetric constraints. If we use these

approaches to deal with asymmetric constraints, tighter

constraints have to be chosen which lead to a smaller

feasible region.

V. CONCLUSIONS

In this paper we proposed an MPC scheme for LPV

systems with possibly asymmetric constraints. The

obtained online optimization problem is a convex opti-

mization problem and allows the first control action to

be chosen freely. We have shown that the proposed

scheme guarantees recursive feasibility and closed-

loop stability if the optimization problem is feasible at

initial time. In the case of symmetric constraints, by

determining the terminal control law, terminal penalty

term, and terminal region online, a less conservative

MPC controller has been derived. The obtained online

optimization problem is subject to LMIs. Numerical

examples illustrate the effectiveness of the results.
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